Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Authors
Abstract:
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption. Although there have been many attempts to model stop and go maneuver via traffic models, but predicting the future vehicle's acceleration in steps ahead has not been studied much in this models. The main contribution of this paper is in designing integrated genetic algorithm-artificial neural network (GA-ANN) which is a soft computing method to simulate and predict the future acceleration of the stop and go maneuver for different steps ahead based on US federal highway administration’s NGSIM dataset in real traffic flow. The results of this study are compared with two methods, back propagation based artificial neural network model (BP-ANN) and standard time series forecasting approach called ARX model. The mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination or R-squared (R2) are utilized as three criteria for evaluating predictions accuracy. The results showed the effectiveness of the proposed approach for prediction of driving acceleration time series. The proposed model can be employed in intelligent transportation systems (ITS), collision prevention systems (CPS) and driver assistant systems (DAS) such as adaptive cruise control (ACC) and etc. The outcomes of this study can be used for the automotive industries who have been seeking accurate and inexpensive tools capable of predicting vehicle speeds up to a given point ahead of time, known as prediction horizon, which can be used for designing efficient predictive controllers based on human behaviors.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
full textCustomers’ Behavior Prediction Using Artificial Neural Network
In this paper, customer restaurant preference is predicted based on social media location check-ins. Historical preferences of the customer and the influence of the customer’s social network are used in combination with the customer’s mobility characteristics as inputs to the model. As the popularity of social media increases, more and more customer comments and feedback about products and serv...
full textPrediction of the Weight and Number of Eggs in Mazandaran Native Fowl Using Artificial Neural Network
Traditional poultry production has changed to a considerable industry after few decades. Now, poultry industry is one of the main sectors to obtain the required protein for human consumption. Prediction of the weight and number of eggs according to economic traits can improve the efficiency of production and the profit of producers. In present study, the weight and number of eggs in Mazandaran ...
full textPrediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
full textPrediction of the Weight and Number of Eggs in Mazandaran Native Fowl Using Artificial Neural Network
Traditional poultry production has changed to a considerable industry after few decades. Now, poultry industry is one of the main sectors to obtain the required protein for human consumption. Prediction of the weight and number of eggs according to economic traits can improve the efficiency of production and the profit of producers. In present study, the weight and number of eggs in Mazandaran ...
full textMy Resources
Journal title
volume 5 issue 2
pages 986- 998
publication date 2015-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023